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SYNOPSIS 

Solvent transport in multilayer thin film structures can induce damaging stresses. It is 
important to understand these quantitatively for the design of processing methods for 
microelectronics manufacture. As a model for such systems, this article focuses on the 
connection between solvent transport in a thin, supported film and the induced bending 
curvature of the film/substrate combination. We develop a simple mechanical model to 
calculate the bending curvature based on the transport-induced stresses. A phenomenological 
moving boundary description of non-Fickian solvent transport often found in glassy poly- 
mers has been used. The evaluation of dimensionless bending curvature for a number of 
generic cases is presented. As an application of the model, experimental data for a polyimide 
(PI )  /quartz-n -methyl-2-pyrrolidinone ( NMP ) system involving significant swelling ( 15- 
20%) of the PI film is analyzed. The analysis shows that the measured bending during the 
transport of NMP in the PI film compares well with that predicted based on an “inter- 
mediate,” non-Fickian diffusion mechanism of NMP, consistent with the finding obtained 
from a laser interferometric study. Estimation of the swelling-induced stress shows that it 
is large and as significant as that due to thermal “curing.” 

INTRODUCTION 

The success of multilayer packaging technologies in 
building microelectronic devices relies, in part, on 
the understanding and proper control of internal 
residual stresses within the polymer dielectrics. 
These stresses are generated, for instance, during 
the removal of the casting solvent and the thermal 
“curing” of the polymer. They can distort or damage 
the circuitry, leading to local or catastrophic delam- 
ination in the integrated circuit boards. Obviously, 
the magnitudes of such internal stresses should be 
minimized to achieve the desired performance and 
reliability of microelectronic devices. 

Several efforts have been reported to understand 
stress development during heat treatments of poly- 
mers:4 Surprisingly, relatively few efforts have been 
devoted toward the understanding of the effect of 
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the transport of low molecular weight species on the 
stress development in multilayered systems involv- 
ing polymers. The only studies we are aware of are 
those of Berry and P r i t ~ h e t , ~  who studied the 
stresses induced by the diffusion of moisture in 
epoxy on copper cantilever beams, and of Tong and 
Saenger, who studied the stress development during 
water transport in ultrathin polymethyl methacry- 
late (PMMA) films on quartz beams by the same 
method. In either case, the polymer picked up a rel- 
atively small amount of the penetrant without caus- 
ing appreciable swelling. There seem to be no quan- 
titative treatments of stress development during the 
transport of strong swelling agents in multilayered 
systems. In such systems, the polymer dimensional 
changes during transport and the accompanying 
stress effects may be very large. 

In this article, we analyze the behavior of a bend- 
ing beam during the absorption of a swelling agent 
by a thin polymer coating as a model for studying 
solvent-induced stress effects in multilayered sys- 
tems. The bending beam provides the basis of a re- 
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liable, unambiguous experiment: One measures the 
deflection of the free end of a polymer-film-coated 
cantilever beam during solvent absorption using one 
laser pointer impinging upon the free end of the 
beam.6 Stress is implied by the bending curvature 
obtainable from the end defection data. 

With a suitable mechanical model, one can relate 
the bending curvature to the transport-induced 
stresses in the polymer film. In what follows, we 
develop such a model for the bending curvature of 
a polymer-coated beam using a phenomenological 
description of non-Fickian transport often encoun- 
tered in glassy polymer / solvent systems. Based on 
this description, two limiting cases are studied to 
show the effects of polymer film thickness and sol- 
vent softening of the film. We then use the model 
to analyze the bending curvature data for the poly- 
imide (PI) /quartz-n-methyl-2-pyrrolidone (NMP) 
system. The swelling process in a similar system 
was recently studied by Tong and coworkers7 by an 
interferometric method. Using the present mechan- 
ical model, we show that the bending beam data can 
be predicted quantitatively from the earlier swelling 
data. This gives confidence that the stresses pre- 
dicted by the model are quantitatively accurate. 

BACKGROUND 

It is helpful to review briefly the basis of transport 
of solvents in glassy polymers. One can think of two 
situations for unsteady penetrant transport in poly- 
mers according to the magnitude of the concentra- 
tion interval for the process, i.e., according to the 
difference between initial and final penetrant con- 
centrations. When the interval is relatively small, 
the material properties of the system remain prac- 
tically constant and are well represented by average 
values. In this case, one can call the transport pro- 
cess linear because a mathematical representation 
would be a linear problem. When the concentration 
interval is large enough so that concentration-de- 
pendent material properties vary strongly as a func- 
tion of time and position throughout the process, 
the transport can be called nonlinear. 

For the linear case, Vrentas et a1.8 correlated the 
observed transport behavior with the value of the 
diffusion Deborah number (DEB)d, defined as the 
ratio of a characteristic time for macromolecular re- 
laxation to a characteristic time for diffusion. They 
suggested that the transport should be Fickian if 
the value of Deborah number is either very large or 
very small; non-Fickian effects should occur when 
Deborah number is -0 ( 1). This notion has been 

generalized to the nonlinear case by Billovits and 
Durning,’ who proposed that non-Fickian effects 
occur whenever the local (DEB) d passes through 
0 ( 1) .  For both the linear and nonlinear cases, there 
is a modicum of experimental support for the Deb- 
orah number correlation. This indicates that the dif- 
fusion is coupled to macromolecular reconfiguration 
in the non-Fickian processes. 

Alfrey and coworkers” first organized the non- 
Fickian behaviors observed for sorption when the 
concentration interval is large (i.e., for the nonlinear 
case). They found that all behaviors lie between two 
extreme limiting cases, Fickian and “Case II.” 

Case I1 has the following features”?l2: 

1. Concentration profiles with a sharp boundary 
separating the swollen region with equilib- 
rium solvent content from a glassy region 
where the solvent concentration is negligible. 

2. The sharp boundary moves through the 
polymer with a velocity that is constant in 
time. 

3. A small “Fickian precursor’’ exists in the 
glassy region just ahead of the boundary. 

4. There exists an induction time during which 
the sharp boundaries are set up. 

5. There exists a tendency toward Fickian- 
like behavior (diffusion-controlled behavior) 
when the concentration gradient behind the 
boundary becomes significant. 

There is now reasonable evidence that the non- 
Fickian transport of organic penetrants in glassy 
polymers is the result of a coupling between the dif- 
fusion of penetrant due to an activity gradient and 
the time-dependent response of the polymer “net- 
work” to diffusion-induced deformation ( i.e., 
“swelling”). This notion is consistent with the Deb- 
orah number correlation. In Fickian diffusion, at one 
extreme the response of the polymer network to 
swelling is rapid so the penetrant diffusion controls 
the process. At the other extreme, Case I1 transport, 
the mechanical response of polymer to swelling con- 
trols the process. The dynamic response in this case 
is the development of a moving boundary. Many at- 
tempts have been made to model the nonlinear, non- 
Fickian diffusion. The works by Astarita and Sarti12 
and by Thomas and WindleI3 are the most success- 
ful. Billovits and Durning” concluded that these 
two models are conceptually similar and comple- 
mentary. In this article, the transport of solvents in 
a polymer-coated beam is modeled after Astarita and 
Sarti (A-S) . The reader can find thorough discus- 
sions of the A-S model in Ref.12. 
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MODEL OF THE BENDING CURVATURE 

BEAM DUE TO THE ABSORPTION 
OF SOLVENT 

OF A POLYMER-COATED CANTILEVER 

We use elementary beam theory1* to analyze the 
flexure of a polymer-coated beam during the ab- 
sorption of a penetrant by the coating. The analysis 
follows the line of thought of Berry and P r i t ~ h e t . ~  
Figure 1 shows a schematic of the coated cantilever 
beam. Initially, the coated beam has a curvature, 
R r’ , which indicates an initial equilibrated state of 
the stresses within the coating and the substrate. 
This initial stress state could result from, for ex- 
ample, the shrinkage of the coating due to drying 
during the preparation of the coated beam. The 
coated beam is suddenly immersed in an organic 
penetrant that diffuses into the coating, causing 
substantial swelling of the polymer layer perpen- 
dicular to the interface between polymer coating and 
substrate. The analysis for the absorption effect is 
relative to the initial state of the beam. We assume 
that: 

1. Only one-dimensional transport of penetrant 
occurs (along z direction ) and the A-S model 
accurately describes the transport. This im- 
plies that during the transport there exists a 
highly swollen layer of thickness X and a 
nearly dry polymer layer of thickness 6, sep- 
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Figure 1 
a swelling process. 

Schematic of a coated, cantilever beam during 

2. 

3. 

4. 

5. 

arated by a sharp moving boundary. The 
polymer (both swollen and unswollen por- 
tions) and the substrate of thickness h are 
Hookean elastic materials with constant 
moduli. 
Plane cross-sections of the beam remain 
plane; this gives that all three shearing strains 
are zero, yxy = yrz = yyz = 0. 
The cantilever beam acts like a composite 
narrow plate in which the normal strain in x 
direction, t,,, equals the normal strain in y 
direction, cyy ,  ( E , ,  = = c ) ;  the same holds 
for the corresponding normal stresses, i.e., a,, 
- un = a. 
The beam is traction free so that the net 
stress over the beam surface is zero; in par- 
ticular, the normal stress in z direction, a,, 
is zero and shear stresses, 7, and rYz, are zero. 
This is a plane stress case. 
The polymer thickness change caused by 
penetrant is much less than the lateral di- 
mension of the polymer-coated beam. 

- 

From Hook’s law, one obtains: 

where E is the Young’s modulus of a material, v the 
Poisson’s ratio of the material, and E’ the elastic 
stiffness. 

A “Trilayer” Model 

Figure 1 shows all the relevant dimensions. The 
polymer film has width b ,  initial thickness t i  and 
length L .  First, consider the polymer film alone, de- 
tached momentarily from a precurved beam and free 
from any external force as shown in Figure 2 (a ) .  
The midplane of the detached film is z = 0, approx- 
imately the neutral axis. The subscripts s and g de- 
note quantities referring to the swollen and dry lay- 
ers, respectively. Applying eq. ( 1 ) gives: 

Here, tabs is the strain caused by local isotropic 
swelling: 

Cabs = s * c ( z ,  t ) ,  

where c = p l /  ( pz* C2) with p1 being the density of 
penetrant, p2 the density of polymer, C2 the partial 
specific volume of polymer, and t the time. If the 
excess volume is neglected, S =- C1/3 with C1 being 
the partial specific volume of the penetrant. Also, td 
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Figure 2 Schematic of (a) the detached polymer film 
and (b ) the corresponding one-dimensional polymer ma- 
terial coordinates, t'. 

is an unknown normal strain at the midplane de- 
termined by the force and moment balances on the 
cross-section of the detached layer and Cbend is the 
strain relative to the midplane ( z  = 0)  due to bend- 
ing : 

where Rd( t) is the radius of curvature of the de- 
tached layer. 

Substituting gives 

Performing the usual normal force and moment 
balances on any cross-section of the detached layer 
gives the following expression for R;' ( t )  : 

Here, the parameters ml and m2 are defined as fol- 
lows: 

ml = 8 E : E ' 2 ' / ( 8 E ( 3 ) E ( 1 )  - 3(E( ' ) ) ' )  ( 4 )  

where the quantities E( ' ) ,  E @ ) ,  and E ( 3 )  have the 
units of modulus ( dynes/cm2) and are given in Ap- 
pendix A. The zero moment ( c )  and the first mo- 
ment (cz) of the penetrant concentration c are de- 
fined and approximated as below to account for the 
swelling effect: 

where q' is the z-directed dimension in the polymer 
material coordinate7 having the same origin as z 
[Fig. 2 ( b )  J , A( t )  the position of swollen-dry inter- 
face (moving boundary) in q', and texp ( = X ( t )  + 6 ( t )  ) 
the measurable total polymer film thickness. 

Note that eq. ( 3 )  gives correct limiting results: A 
flat detached layer results either without the ab- 
sorption of penetrant or with a uniform distribution 
of penetrant; a flat layer also results if the modulus 
of the swollen portion is negligible (E:/EL < 1 ) . 

The analysis of the detached layer allows a simple 
calculation of the measurable coated beam curvature 
by "recombining" the detached polymer film and 
the substrate using suitable matching conditions. 
Let EJ, be an appropriate average of El and EL. 
According to reference, l 4  one can derive: 

as the appropriate composite modulus used in the 
following development. Also, a force balance on the 
cross-section of the polymer-coated beam gives (see 
Fig. 1): 

-P1+ P2 = 0, or P1= P2 = P, 

where P1 is the net compressive normal force exerted 
on the polymer film by the substrate due to the ad- 
sorption of penetrant and P2 the net tensile normal 
force exerted on the substrate by the polymer layer 
due to the same cause. 

Now, a moment balance on the cross-section of 
the coated beam gives one matching condition: 

Mi + Mz - P(h + X + 6)/2 = 0, ( 8 )  
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where Ml is the swelling-induced bending moment 
acting on the cross-section of the polymer layer, M2 
the swelling-induced bending moment on the cross- 
section of the quartz substrate (see Fig. 1 ), and P (h 
+ X + 6 ) / 2  the “resisting” moment. Since we assume 
the bending beam is linear elastic, the moment-cur- 
vature equation from elementary beam theory l4 

gives 

where R- l (  t )  is the measured bending curvature of 
the coated beam, Ip is the moment of inertia of 
the cross-section area of the polymer film, Ip 
= btZXp/12, and Iq is that of the substrate, Iq = bh3/  
12. Then, eq. ( 8 )  becomes: 

1 / 2 P ( h  + 6 + A )  = [ l / R ( t ) ] ( E b I p  + EbIq) 

- E;Ip[I /Rd( t )  + 1/Ri]  - EbIq/Ri. 

A second mechanical matching condition is that 
the polymer normal strain matches the substrate 
strain at  the film/substrate interface: = tq.  One 
has 

~ p o ~ y  = S ( C )  - P/(Ebtexpb) - &xp/ 

2 [ 1 / R ( t )  - 

where S ( c )  gives the uniform expansion of polymer 
film due to ( c ) .  Also, tq = P/ (Ebhb)  + h / 2  [ l / R (  t )  
- 1 / Ri]  . Consequently, 

Eliminating P from the two matching conditions 
leads to the following equation for the bending cur- 
vature of the polymer coated beam l / R  ( t )  as: 

A ( t )  and B ( t )  both have units of length and are 
defined in Appendix A. Note that B ( t )  -= A ( t )  . 

At equilibrium, one has c ( t + 03 ) = c, , a con- 
stant equilibrium concentration, R ( t + 03 ) = R ,  , 
the equilibrium bending curvature, A ( t + 03 ) = A,, 
and R,’(t + 03) = 0. So, from eq. (9)  

which is the same as the equilibrium result of Berry 
and P r i ~ h e t . ~  

Now, let us introduce a dimensionless form of eq. 
(9) with the following dimensionless quantities: 

scaled bending curvature 

y = [R-’ - R T 1 ] / ( R k 1  - RT’) 

dimensionless initial film thickness 

a1 3 ti/h 

6 = ( texp - ti) / t i  

swelling film thickness ratio 

dimensionless moduli ratio 

kl Eb/Eb 

= [E i / (Eb t :xp ) l  [ A 3  + EVEi(t&p - S 3 ) I  

= t ~ i / ( ~ b t : ~ ~ x p ) i [ s ~  + ~ t : , ,  - mi. 
One can rewrite the expressions for A ( t )  and B ( t )  
in terms of these dimensionless quantities as shown 
in Appendix A. With these dimensionless quantities, 
the dimensionless bending curvature y is given by 

where eq. ( 3 )  for Rd( t )  has been used. The dimen- 
sionless quantities q1 and q2 are 

( 1 2 )  
q 1 5 - -  A ,  3mlA,B 

A AShal(1 + 0 )  

24m2A,B 
Ahai(1 + 6 )  q2 = 

These depend both on the transport and mechanical 
properties of the system. The dimensionless mo- 
ments in eq. (11 ) , Z and F ,  are 

Equation ( 1 1 )  allows the calculation of bending 
curvature of a beam system with any concentration 
profile possessing a sharp moving boundary, pro- 
vided that the mechanical properties of the system 
are known. In the absence of the moving boundary, 
one can still use eq. ( 1 1 )  by simply eliminating the 
dry layer in Figure 1, i.e., setting 6 = 0. Equation 
( 11 ) properly satisfies the two limits: at t = 0, y = 0 
and at  t + 03, y = 1. 
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A Useful Simplification 

In the above discussion, we have included the feature 
that the swollen and dry layers have significantly 
different moduli. This is usually observed when Case 
I1 diffusion takes place. It can occur, however, that 
there is virtually no change in the moduli upon 
swelling, in which case we can simplify the results 
of the previous section. Since in this case, E: 
= EL, i.e., k2 = 1, the average Young’s modulus of 
the polymer film EL is EL = EL = EL. This simplifies 
the quantities q1 and q2 to: 

From eq. ( 18)  : 

A, 
41 = - A 

Time-dependent Concentration Profile and 
Film Thickness 

The calculation of the bending curvature requires 
the concentration distribution, c (  I!,  t )  , the measur- 
able film thickness, texp, and the thicknesses of the 
swollen ( A )  and dry (6 )  layers. 

A schematic representation of the one-dimen- 
sional penetrant concentration profile in the NMP- 
PI system inferred from an earlier study’ is given 
in Figure 3. Here the polymer material coordinate 
9 (note that 9 is different from vt, 9 = ti/2 - v’) is 
related to the lab coordinate z by 

IMPERMEABLE SUBSTRATE 

0 

LAB COORDINATE 
SWOLLEN AND DRY LAYER 
THICKNESS IN z 

SWOLLEN LAYER THICKNESS IN q 
0 POLYMER MATERIAL COORDINATE 

O P  9 
Figure 3 
the lab (2) and polymer material ( 7 )  coordinates. 

Schematic of penetrant concentration profile, 

Note that a t  equilibrium 

Now, to evaluate q1 and q2 in eq. ( 11 ) , the expres- 
sions of 6 ( t)  and h ( t)  are needed. From eq. ( 18) ,  
we have: 

and since 6 ( t)  is the thickness of dry layer we have: 

6 ( t )  = t i  - A ( t ) .  (21)  

Now, the A-S modell’ supplies simple formulae 
for c (9, t )  and texp ( t )  in the polymer material co- 
ordinate, 9, for three cases: 

1. A diffusion-controlled moving boundary pro- 
cess (Fickian-like) . 

2. The Case I1 diffusion. 
3. An “intermediate” case between (a )  and (b) . 

Appendix B gives the dimensional form of these for- 
mulae, as well as expressions for 6 ( t )  and h ( t)  for 
each of the three cases. 

GENERIC STUDY OF BENDING BEHAVIOR 
DURING THE TWO LIMITING CASES: 

TRANSPORT 
CASE II AND DIFFUSION-CONTROLLED 

To see the characteristic bending behavior of a 
polymer film coated beam due to the absorption of 
a penetrant, we calculate the bending curvature for 
two limiting transport cases: Case I1 and diffusion 
controlled. The calculations illustrate that the 
bending beam can offer a method of detecting the 
transport mechanism in the deposited film. To be 
definite, we employ mechanical and transport prop- 
erties on the order of those for the PI/quartz-NMP 
system studied recently by interferometry. We study 
how y is affected by the relative thicknesses of the 
polymer film and quartz substrate ( al) , and the rel- 
ative moduli of the swollen and glassy layers of the 
polymer ( k2). The other necessary properties of the 
beam system are summarized in Table I. 



SWELLING-INDUCED STRESSES IN FILM 715 

Table I Properties Needed for the Preparation of Figures 4 and 5 

Property Value 

Thickness of substrate 
Thickness of initial polymer film 
Partial specific volume of solvent 
Equilibrium solvent concentration 
Young's modulus of polymer film 
Young's modulus of substrate 
Poisson's ratio of polymer film 
Poisson's ratio of substrate 
Equilibrium thickness swelling ratio 

h = 0.01 cm 
ti = 5 x 10-~ cm 
Gl = 1.0 cm3/g 
c, = 0.2 ( g  solvent/cm3 polymer) 
Eg = 10" dynes/cm' 
E, = 10'' dynes/cm' 
vg = 0.45 
vq = 0.15 
em = 0.17 

Equation (11) is used to calculate the dimen- 
sionless curvature y. Computer programs were de- 
veloped to evaluate the quantities q1 [ eq. ( 12) 3 ,  q2 
[ eq. ( 13) ] , 2 [ eq. ( 14) 1, and F [ eq. ( 15) ] employing 
necessary properties from Table I and appropriate 
equations in Appendix B for the two different trans- 
ports. Results are shown in Figures 4-7. 

Figures 4 and 5 show both the swelling ratio B 
and the dimensionless curvature y for Case I1 plotted 
against scaled time 7 = @,/ti, where uo is the velocity 
of the moving boundary. Figure 4 shows the effect 
on y of the ratio al = ti/h when the swollen and dry 
layers have the same modulus, k = 1.0, i.e., assuming 
no solvent softening effect. It is clear that the thick- 
ness ratio affects the bending curvature, y, signifi- 
cantly. As the value of al is increased through 0.1, 
the y curve becomes concave down. In the usual 
case, where the coating is much thinner than the 
substrate, the bending curvature is linear with time, 
in parallel with the swelling ratio 0. Figure 5 shows 
the effect on y of the modulus ratio k2 with al = 0.1 

0.8 - 

0.6 - 

0.4 - 

+-- 
0.0 
0.0 0.2 0.4 0.6 0.8 I .o 

DIMENSIONLESS TIME r = t v o / t i  

Figure 4 Swelling ratio, B (  0 )  , and bending curvature, 
y, vs. 7 = u,t/ t i  for the Case I1 diffusion. The parameters 
are as in Table I with k2 = 1.0 and for several values of 
ai [ 0.1 ( + 1, 1 ( 0 1, 2.0 (A)  I .  

to examine the solvent softening effect. It is found 
that a difference between the moduli of the swollen 
and dry layers does not much affect the bending 
behavior when the coating is much thinner than the 
substrate. As the solvent softening effect becomes 
more significant, i.e., as the value of k2 decreases 
from 1.0 to 0.01, the y curves almost overlap and 
are all linear with time. Typically, the swollen layer 
is softened by swelling ( k2 < 1) in real systems; 
therefore, one expects that both 8 and y should show 
linear increases in time for thin deposited films (a1 

I 0.1) during the case I1 transport. 
For the diffusion-controlled case, one sees similar 

effects of al and k2.  Figures 6 and 7 show both the 
B and y for the diffusion-controlled case plotted 
against the square root of dimensionless time, fi 
= fm, where D is an effective diffusion coef- 
ficient in the polymer material coordinate. Figure 6 
shows the effect of a1 on y with k2 = 1.0. For thin 
coatings (a l  I O.l), the y and 8 curves are both 
linear with fi. It is found that increasing al(a1 

1 ' 1 ' 1 ' 1  1.0 

o.81 0.6 

1 

DIMENSIONLESS TIME T =  tvo/ t i  

Figure 5 Swelling ratio, B (  0 )  , and bending curvature, 
y, vs. T = u,t/ t i  for the Case I1 diffusion. The parameters 
are as in Table I with al = 0.1 and for several values of 
b[0.01(+), 0.1(0), l.O(A)]. 
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0.0 4 
0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 

DIMENSIONLESS TIME A=,/-) 
Figure 6 Swelling ratio, O( 0 )  , and bending curvature, 
y, vs. \I; = for the diffusion-controlled transport. 
The parameters are as in Table I with kp = 1.0 and for 
several values of a, [ 0.1 ( + ) , 1 ( 0 ) ,2.0 (A) ] .  

> 0.1) causes the y curve to become concave down, 
deviating from the swelling behavior, reminiscent 
of the behavior during case I1 (see Fig. 4) .  Also, the 
higher the value of al ,  the higher the initial bending 
rate. Figure 7 shows the effect on y of k2 for a thin 
film ( al = 0.1 ) . One can see that the y curves for 
various k2 (0.01, 0.1, 1.0) are linear with fi and 
almost overlap. Clearly, in a real system one can 
expect that both 8 and y increase linearly with fi 
for thin deposited films during diffusion-controlled 
transport. 

In summary, from the above study it is most in- 
teresting to find that when the polymer film is much 
thinner (a l  I 0.1) than the substrate the solvent 
softening effect does not influence the bending be- 
havior and the bending parallels the film swelling. 
These results suggest that the bending beam can be 
used as a direct method to study the transport 
mechanism of solvents in supported glassy polymer 
films, provided the initial film thickness is signifi- 
cantly less than the substrate thickness. 

EXPERIMENTAL 

The bending beam experiment performed in this 
study is identical to that reported recently for the 
study of water transport in PMMA.' In our bending 
beam experiment, one spincasts the polymer film of 
interest on one side of a slender, rigid beam such as 
fused quartz. One end of the coated beam is then 
clamped (vertically) with the unclamped length 
being -3 cm. A low-power laser ( -  1 mW He-Ne 
laser a t  6328 A )  is then directed onto the free end 

of the beam and the position of the reflected ray is 
marked on a vertically mounted paper about 1 m 
away. Then, the beam is exposed to the liquid pen- 
etrant, which diffuses into the polymer coating, in- 
ducing curvature that changes with time. The in- 
duced curvature shifts the reflected ray's position 
until sorption equilibrium is reached. From the re- 
flected ray's position and simple geometric consid- 
erations, the beam curvature (K1) can be calculated 
as a function of time until the absorption equilibrium 
is reached. 

Thin fused quartz beams (3.8 cm long, 0.3 cm 
wide, and -0.0076 cm thick) were coated by curing 
the spun-on PI precursor, polyamic acid in NMP, 
to 400°C in nitrogen. NMP for the bending beam 
experiment (from Aldrich, HPLC grade) was used 
as received. For each bending beam experiment, the 
dry PI thickness ( -  5 pm) was determined by the 
weight, density, and lateral dimensions of the beam 
and checked with a stylus profilometer. The exper- 
iments were performed at room temperature (2OOC) 
and 80°C. 

RESULTS AND DISCUSSION 

Analysis of the Experimental Bending 
Curvature Data 

In the earlier study of Tong et al.,' the formulae for 
the three cases of the A-S model discussed earlier 
were fit to 8 vs. t data determined by interferometry. 
The analysis showed that the "intermediate" case 
gave the best representation of the data. The pa- 
rameters for the NMP sorption experiments a t  20 

L"'"'''''''''1 

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 

DIMENSIONLESS TIME AT=-) 
O( 0 )  , and bending curvature, 

the diffusion-controlled transport. 
The parameters are as in Table I with al = 0.1 and for 
several values of k2[0.01(+), 0.1(0), l.O(A)]. 
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Table I1 Summary of the Transport Parameters From Interferometry' 

No. Case 

Effective Boundary 
Diffisivity Velocity 

(cm2/sec, ~ 1 0 ' ~ )  (cm/sec, x109) 

20°C 80°C 20°C 80°C 

1 Diffusion-controlled case 0.85 66 
2 Intermediate process 2.8 100 6.0 175 
3 Case I1 transport 4.4 460 

and 80°C extracted from the least-square fits are 
summarized in Table 11. The prediction of y for the 
three cases, namely, diffusion controlled, case 11, and 
"intermediate" transport, were done by using eq. 
(11) , the pertinent formulae in Appendix B with 
transport parameters in Table 11, and the auxiliary 
physical data in Table 111. Because the difference in 
moduli of the swollen and dry PI film was found to 
be negligible,3 we set k2 = 1, and use the simplified 
formulas [ eqs. (16) and (17)] for the calculations 
of q1 and q2 in eq. ( 11 ) . The results are plotted in 
Figures 8 (20OC) and 9 (80°C) against the scaled 
time, 7 = D,,,t/t;,  together with the experimental 
bending curvature data. The diffusion coefficient 
D,, is that from Table I1 for the intermediate 
transport at 20 and 80°C, respectively. Clearly, the 
predictions of the intermediate case give the best 
matches to the data a t  both temperatures. In fact, 
the quantitative agreement is reasonably good. Note 
also that for our beam system the thickness ratio is 
small, al = 0.0656 ( <0.1), and that the experimental 
data appear to parallel the swelling behavior. This 
is exactly the behavior predicted in the previous 
section for the Case I1 and diffusion-controlled 

Table I11 Mechanical and Geometric Constants for the Bending Beam 

transport. In summary, the calculations encourage 
that our simple mechanical model can predict the 
bending behavior of a coated beam well enough for 
engineering purposes. 

Estimation of the Swelling-Induced Stress 

As mentioned in the introduction, the stress devel- 
opment induced by the absorption of a swelling agent 
in a supported polymer thin film is not yet well un- 
derstood. It is thought that during some circuit board 
processes solvent transport can induce residual 
stresses approximately equal to those due to tem- 
perature changes alone. To check this, we evaluated 
the swelling-induced stresses to compare them with 
the stresses due to thermal "curing" alone. 

The mean normal stress in the polymer coating, 
induced by the absorption of a penetrant, can be 
estimated by dividing the compressive normal force 
P1 (=  P )  by the cross-sectional area of the coating 
texpb and denoted by An,, indicating the stress 
change relative to the initial stress state. 

Constant 20°C 80°C 

Thickness of quartz substrate, h (cm) 7.62 x 10-3 same 
Thickness of initial polymer film, ti (cm) 5 x 10-~ same 
Beam length, I (cm) 3 2.7 
Partial specific volume of NMP, Gl (cm3/g)15 1.027 same 
Equilibrium NMP concentration, c, (g NMP/cm3 PI) 0.2 same 
Young's modulus of glassy PI film, Eg (dyne~/cm~)~ 1.4 X 10" same 
Young's modulus of quartz beam, E, (dynes/cm2)16 7.3 x 10" same 
Poisson's ratio of glassy PI film, v i 7  0.45 same 
Poisson's ratio of quartz substrate, vq16 0.16 same 
Equilibrium thickness swelling ratio, Om7 0.17 same 
Equilibrium bending curvature, R ;' 0.004 0.0005 
Initial bending curvature, R;' 0.02836 0.02608 
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0.0 0.2 0.4 0.6 0.8 I .o 
DIMENSIONLESS TIME r=Dexpt/tf 

Figure 8 Comparison of the predicted curvature y for 
the three cases (A ,  diffusion controlled; +, intermediate; 
0, Case 11) with the experimental bending curvature (0 )  
(at  20°C). The corresponding values of the model param- 
eters are given in Tables I1 and 111. 

From eqs. (8) and ( 3 )  with assuming E: = EL, one 
can get 

or in terms of dimensionless quantities 

1 
6a1h2(6'+ l ) [ ~ l ( 6 '  + 1 )  + 11 Aa, = 

X {Ebh3[kla;(6' + 1 ) 3  + l](R;' - RT1)-y 

- 12Sc,kla:Ebh2(6' + 1)'F). (23 )  

When the coating is significantly thinner and 

OA 0.2 / //+ 

0.0 0.0 a'- 14; 0.2 

./+ /+ /:-I 
I 
0.4 0.6 0.8 1.0 

DIMENSIONLESS TIME T=D,xpt/ti2 

Figure 9 Comparison of the predicted curvature y for 
the three cases (A, diffusion controlled; +, intermediate; 
0, Case 11) with the experimental bending curvature (0 )  
(a t  80°C). The relevant values of the model parameters 
are given in Tables I1 and 111. 

DIMENSIONLESS TIME r=Dexpt/ti2 

Figure 10 Comparison of the estimated swelling-in- 
duced stress, Aum, for the three cases ( A ,  diffusion con- 
trolled; +, intermediate, 0, Case 11) with that, Auerp ( O ) ,  
from the initial film thickness ti and the experimental 
curvature (a t  20°C). 

softer than the substrate, i.e., al < 1 and kl e 1, 
then eq. ( 2 3 )  can be simplified to 

Ebh2(R-' - R?') 
Aa, = (24)  

6texp 

Equation (24)  gives the same stress-bending cur- 
vature relation used in Refs. 1-3, 17, and 18 for the 
study of stress development during heat treatments 
using originally flat coated beams (R;' = 0) .  

We used two procedures to estimate the swelling- 
induced stress from eqs. (23 )  and (24). In the first, 
it was calculated using eq. ( 24) assuming texp = ti 
and using experimental curvature data; this value 
is denoted by Aaexp. In the second, we used eq. (23) 

0.0 0.2 0.4 0.6 0.8 I .o 
DIMENSIONLESS TIME r=Dexpt/ti2 

Figure 11 Comparison of the estimated swelling-in- 
duced stress, Au,,,, for the three cases (A, diffusion con- 
trolled; +, intermediate.; 0, Case 11) with that, Auexp (0), 
from the initial film thickness t i  and the experimental 
curvature (at  80°C). 



and the information for y and 8 from the previous 
section and the appropriate values of Eb, t i ,  R;’, 
and Ri’  from Table 11; in this way, one can predict 
the stress for the three cases discussed earlier. All 
results are plotted in Figures 10 and 11 for 20 and 
80°C, respectively. Note that our estimated residual 
stress (< 2 X 10’ dynes/cm2) is on the same order 
as those previously reported’,17 (1-6 X 10’ dynes/ 
cm2) for thermally induced stresses. The stress level 
is less than the yield strength of typical commercial 
PI films” (6.3 X 10’ dynes/cm2, at 3% yield strain), 
and far below its ultimate tensile strength (1.58 
X 10’ dynes/cm2) at  298 K. This indicates that the 
PI film probably would not undergo plastic defor- 
mation or fracture. 

CON CLUS 10 NS 

We developed an elementary model for the calcu- 
lation of the bending curvature of a polymer-film- 
coated beam induced by the non-Fickian adsorption 
of a low molecular weight species. It can be readily 
proved that, under proper simplification, the results 
of Berry and Pritchet5 are recovered from the model 
(the Fickian case). 

We showed the effects of both the polymer film 
thickness and solvent softening on the bending be- 
havior. In general, when the deposited film is much 
thinner than the substrate ( al I 0.1) , the bending 
kinetics parallel the swelling kinetics. This feature 
shows that the bending beam can provide the same 
information as a sorption experiment under these 
circumstances. Exactly this behavior is observed 
experimentally in our study of the NMP-PI system. 
The experimental analysis indicates that the bend- 
ing induced by NMP sorption into the glassy PI  film 
coated onto a quartz beam is indeed best described 
when using the “intermediate” transport model ac- 
cording to Astarita and Sarti; this is consistent with 
the conclusions of our recent laser interferometry 
study7 of the swelling process. The estimation of 
the swelling-induced stress using the model shows 
that it is as important as that induced in the thermal 
“curing” process. 

In summary, the work encourages that the simple 
mechanical model presented here accurately predicts 
swelling-induced stresses in thin deposited polymer 
films. This finding makes the model a useful tool 
for engineering calculations. 

C. J. Durning and T. Z. Fu acknowledge partial financial 
support from the National Science Foundation (Grant 
CBT-86-17369). The authors thank Dr. B. J. Han for 
useful discussions. 
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NOMENCLATURE 

beam width 
local penetrant concentration ( p1 /p2C2)  
equilibrium penetrant concentration 
threshold penetrant concentration 
first moment of penetrant concentration 
second moment of penetrant concentra- 

diffusion coefficient in polymer material 

Young’s modulus of j ;  s, swollen polymer; 

substrate thickness 
beam length 
moment of inertia of material layer j 
bending moment on cross-section of 

polymer film 
bending moment on cross-section of sub- 

strate 
radius of curvature of polymer-coated 

beam 
net compressive normal force exerted on 

cross-section of polymer film by the 
substrate 

net tensile normal force exerted on cross- 
section of the substrate by polymer film 

radius of curvature of detached polymer 
layer 

equilibrium radius of curvature of poly- 
mer-coated beam 

swelling parameter ( Cl / 3 ) 
lab time 
experimental polymer film thickness in 

lab frame 
initial film thickness 
Poisson’s ratio 
partial specific volume of component i; 

initial velocity of moving boundary 
distance in lab frame 

tion 

coordinate 

g , glassy polymer ; q , quartz 

1, penetrant; 2, polymer 

dimensionless polymer film thickness 
local normal strain due to absorption of 

distance in polymer material coordinate 

distance in polymer material coordinate 

swollen layer thickness in the polymer 

shearing strain, i = x ,  y ,  z ;  j = x ,  y ,  z 
normal stress in direction i, i = x ,  y ,  z 

penetrant 

(see Fig. 2(b)) 

(see Fig. 3) 

material coordinate 
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Gi 
Pi density of component i 
Ed 

€bend 

A ( t )  
6 ( t )  
Y dimensionless bending curvature of 
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APPENDIX A 

The quantities E ( ’ ) ,  E ( 2 ) ,  and E ( 3 )  in eqs. (4)  and 
(5) are defined as follows: 

E(’ )  = ( l / texp)[Ei6( t )  + E : A ( t ) ]  ( A l )  

E(2)t:xp = [EL( (& - A ) 2  - (texp)2) 

E(3’t:,, = E i [  (6 - A ) 3  + tZxp] 

+ E:((texp)2 - (6 - (A2) 

+ E:[t:,, - ( 6  - A ) 3 ] .  (A3) 

The quantities A ( t )  and B ( t )  in eq. (9)  are: 

All symbols are defined in the nomenclature. 
A and B can be recast in terms of dimensionless 

quantities as: 

+ l l  

1 
2 311 + a l ( l  + O ) ]  

A = - [  h kla:(i + e ) 3  + 1 

+ 1 + U l ( l  + O ) ]  

a:(i + e)2h 
B =  [l + klUl(1 + O)]. 

6[1 + al(1 + O)] 

APPENDIX B 

Analytical penetrant concentration distributions for 
the three cases can be obtained from the A-S model. 
They are summarized below, along with the corre- 
sponding expression of the film thickness, texp, the 
swollen layer thickness ( A ) ,  and the dry layer thick- 
ness ( 6 ) .  

DIFFUSION-CONTROLLED PROCESS 

For the diffusion-controlled process, diffusion of the 
solvent in the swollen layer controls the moving 
boundary motion and the transport is Fickian-like. 
Referring to the discussion in Refs. 7 and 11, and 
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assuming t i*vo/D % 1, where uo is the moving 
boundary velocity, then 
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A = 2 m f i  

and 

Here, c* is the threshold penetrant concentration 
defined in Ref. 11 and parameter m is the solution 
of 

where q = C* / C , .  
These are valid provided the moving boundary 
has not yet reached the substrate, i.e., t < t i**2/  
( 4Dm2).  Substituting (B2)  into eq. (19) and inte- 
grating gives: 

texp = ti + ( 2 6 ) v ^ l ( c ,  - c * ) / [ c e r f ( m ) ]  (B3)  

or, for c*/c, < 1, which is usually found in glassy 
polymers / strong swelling agent pairs, "J' 

texp ti+ (2%)v^lc,/[\l;Terf(m)]. (B4)  

This shows, for the diffusion-controlled limit of 

The equations for A (  t )  and 6 (  t )  can be derived 
Astarita and Sarti, that texp is proportional to fi. 

readily from eqs. (20)  and (21) as: 

s ( t )  = ti - ~ ( t )  = ti - 2 m 6 t  

X ( t )  = 2%(v^lc,/(cerf(m)) + m). 

(B5)  

(B6)  

It is apparent that the swollen region increases 
proportionally with fi and the dry layer shrinks lin- 
early with h. 

CASE I I  

For Case I1 limit, there is no penetrant diffusion 
limitation, and the moving boundary motion is con- 
trolled completely by the polymer deformation ki- 
netics a t  the boundary. When tiu,/D < 1 and t < t i /  

u, 9 

A ( t )  = u,t 

and 

c = C* + (c, - c*)H[A(t) - 111, 

where H is the step function. 

For c*/c, < 1, 

c = c,H[ A( t )  - 71. (B7) 

Substituting eq. (B7) into eq. (19) and integrat- 
ing gives: 

The linear time dependence of texp emerges from 

The relations for 6 ( t )  and X ( t )  are 
equation (B8) , as expected. 

and 

The swollen region grows linearly with time; at the 
same time, the dry layer contracts linearly with time. 

INTERMEDIATE CASE 

This behavior is realized when diffusion in the swol- 
len region just begins to affect the boundary prop- 
agation for times when the film has not yet been 
completely penetrated tiu,/D < 1 and t < ti/u,. A 
regular perturbation from case I1 transport yields: 

and for c*/c, < 1, 

where n is defined in Ref. 7. 

grating gives: 
Substituting eq. (B11) into eq. (19) and inte- 

texp * ti + v̂ 1C,U,t 

- V^lc,(l + n)u0**3(t2) / (2D) .  (B12) 

Similarly, 6 ( t )  and X ( t )  are calculated by: 

6 ( t )  = t i  - ~ , t  + 1/2n~?t ' /D (B13) 

X ( t )  = U,(V^IC, + 1 ) t  

- 1/2u~t2/D(v^1C,(1 + n) + n). (B14) 

Analogous to eq. (BlZ),  X ( t )  is found to be a 
function of time raised to some power between 1 /2  
and 1. 


